Composition-Dependent Ion-Exchange Reactivity of Potassium Lithium Titanates

Yasufumi Fuse, 1 Yusuke Ide, 2 and Makoto Ogawa*1,2

¹Graduate School of Science and Engineering, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050

Received November 13, 2007; E-mail: makoto@waseda.jp

The ion exchange of dodecylammonium ion was examined for two potassium lithium titanates; the titanates were $K_{0.80}Ti_{1.71}Li_{0.29}O_{3.97}$ prepared by a solid-state reaction at $800\,^{\circ}C$ and $K_{0.66}Ti_{1.73}Li_{0.27}O_{3.93}$ prepared by a solid-state reaction at $1020\,^{\circ}C$ followed by reaction with aqueous H_2SO_4 and subsequent annealing. A single phase intercalation compound formed successfully for $K_{0.66}Ti_{1.73}Li_{0.27}O_{3.93}$ (the amount of the adsorbed dodecylammonium was $2.1\,\mathrm{mmol}\,\mathrm{g}^{-1}$) by reaction with an aqueous solution of dodecylammonium chloride. On the other hand, the parent titanate remained for $K_{0.80}Ti_{1.71}Li_{0.29}O_{3.97}$ (1.4 mmol g^{-1}).

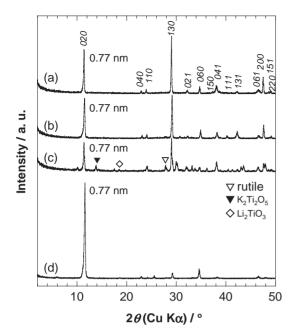
Increasing attention has been paid to layered transition-metal oxides due to their cation exchange, ¹ semiconducting, ² and swelling properties. ³ Lepidocrocite-type titanates, whose general formula is represented as $A_x Ti_{2-y} M_y O_4$ (A, interlayer cation; M, metal ion or vacancy), are characterized by versatility in composition. ⁴ Motivated by the successful swelling of titanate in aqueous solutions containing tetrabutylammonium ion, ⁵ reactions of titanates with inorganic and organic cations have actively been investigated recently. ^{6–16} The functionalization of layered titanates by the intercalation of guest species is a promising method, while quantitative ion exchange is still difficult after successful application of layer-by-layer deposition ¹⁷ or swelling-flocculation reaction ^{6e} to the titanates.

We report herein the composition-dependent controlled reactivity of potassium lithium titanates (KTLOs) toward an alkylammonium ion. The present finding will open up an opportunity to design properties of lepidocrocite-type titanates. The properties of layered clays such as ion-exchange and swelling clays depending on the layer charge density have been well documented.¹⁸

Experimental

Materials. Titanium dioxide (rutile) and alkali metal carbonates were of 99.9% purity or better, were purchased from Rare Metallic, Co., and used as received. Potassium chloride (≥99.5%) was purchased from Wako Pure Chemical Industries, Ltd. and used as received. Dodecylamine hydrochloride (>97%) was purchased from Tokyo Chemical Industry Co., Ltd. and used as received.

Preparation of KTLOs. The preparation of KTLOs by solid-state reaction was conducted according to the literature; 6c K₂CO₃, Li₂CO₃, and TiO₂ were ground in a molar ratio of 3x:x:(12 - 2x), where x denotes 0.85, 0.80, or 0.70, respectively, and the mixture was heated at 800 °C for 30 min in air to be decarbonated. After cooling, the mixture was ground and then heated at 800 °C for 20 h in air. Another reported procedure used in this study for the synthesis of KTLO involves the post-synthetic treatment of a KTLO synthesized by a solid-state reaction. 16 K₂CO₃, Li₂CO₃,


 TiO_2 , and KCl were ground in a molar ratio of 2.2:0.73:9.5:1.8 and the mixture was heated at $1020\,^{\circ}\text{C}$ for 4 h in air. After cooling, the obtained powder ($10\,\text{g}$) was dispersed in deionized water ($200\,\text{mL}$) and to the slurry, $10\,\text{wt}\,\%$ aqueous H_2SO_4 solution was added dropwise at room temperature until the pH of the mixture plateaued at 7.0. The solid was separated by centrifugation ($4000\,\text{rpm}$, $20\,\text{min}$), washed with deionized water, and dried under reduced pressure. The product thus obtained was heated at $600\,^{\circ}\text{C}$ for 3 h in air.

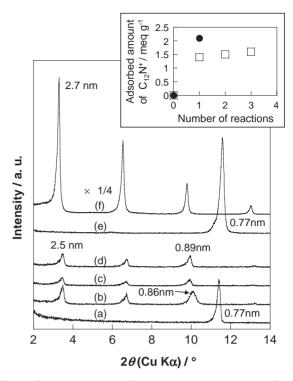
For controlling the composition of KTLO, the post-synthetic treatment using tuned amounts of aqueous H_2SO_4 was applied to a KTLO obtained by the above solid-state reaction at $800\,^{\circ}C$ (x=0.80); to a slurry of KTLO ($2.0\,\mathrm{g}$) in water ($200\,\mathrm{mL}$), 1 wt% aqueous H_2SO_4 solution (1.5– $32.3\,\mathrm{mL}$) was added dropwise at room temperature until the pH of the mixture plateaued (11.0–6.0). The solid was separated by centrifugation ($4000\,\mathrm{rpm}$, $20\,\mathrm{min}$), washed with deionized water, and dried under reduced pressure. The product thus obtained was heated at $600\,^{\circ}C$ for 3 h in air.

Reaction with Alkylammonium. Samples $(0.20\,g)$ were dispersed in an aqueous solution $(50\,\text{mL})$ of dodecylamine (abbreviated as $C_{12}N^+$) hydrochloride (a molar $N/\text{Ti}_{2-y}\text{Li}_yO_4$ ratio of 1.0) and the mixture was stirred at room temperature for 2–3 h until the pH of the mixture plateaued. The reaction was conducted 1–3 times. The product was separated by centrifugation (4000 rpm, $20\,\text{min}$) then washed with deionized water.

Characterization. X-ray diffraction patterns of products were recorded on a Rigaku RAD IB powder diffractometer equipped with monochromatic Cu K α radiation operated at 20 mA and 40 kV. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was performed on a Rigaku SPECTRO CIROS CCD. The products (10 mg) were decomposed for ICP measurement with 12 M H₂SO₄ (3.0 mL) at 150–200 °C for 2 h. Thermogravimetric and differential thermal analysis curves were recorded on a Rigaku TG8120 at a heating rate of 10 °C min⁻¹ under air using α -Al₂O₃ as the standard material. The amount of the adsorbed dodecylammonium was calculated from the thermogravimetric curves of the products, where the mass loss due to oxidative decomposition from 150–800 °C was defined as the amount of inter-

²Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050

Figure 1. XRD patterns of KTLOs obtained by a solidstate reaction at $800 \,^{\circ}\text{C}$ with different compositions of raw materials, $x = (a) \, 0.85$, (b) 0.80, and (c) 0.70 in $K_x Ti_{2-x/3} Li_{x/3} O_4$ and that obtained through treatment with a given amount of aqueous $H_2 SO_4$ followed by heating of a KTLO prepared by a solid-state reaction at $1020 \,^{\circ}\text{C}$.

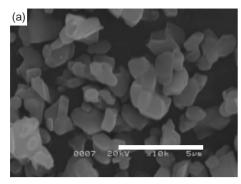

calated ammonium. Scanning electron micrograph (SEM) was obtained on a Hitachi S-2380N.

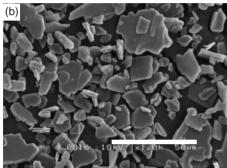
Results and Discussion

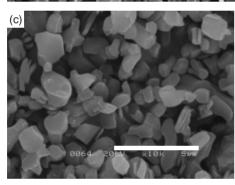
Comparison in Reactivity between Two KTLOs Synthesized by Reported Methods. Figures 1a and 1d depict the XRD patterns of KTLOs prepared by the reported methods, where all the observed diffraction peaks were ascribable to those of $K_{0.8}Ti_{1.73}Li_{0.27}O_4,^{6c}$ indicating the formation of KTLOs. The compositions $(K_{0.80}Ti_{1.71}Li_{0.29}O_{3.97}$ and $K_{0.66}Ti_{1.73}Li_{0.27}O_{3.93})$ of the products were comparable to those $(K_{0.8}Ti_{1.73}Li_{0.27}O_4$ and $K_{0.7}Ti_{1.73}Li_{0.27}O_{3.95})$ reported in the literature. 6c,16

Figure 2 shows the XRD patterns of $K_{0.80}Ti_{1.71}Li_{0.29}O_{3.97}$ and $K_{0.66}Ti_{1.73}Li_{0.27}O_{3.93}$ before and after the reaction with $C_{12}N^+$. For the $K_{0.66}Ti_{1.73}Li_{0.27}O_{3.93}$ system, a single phase product with basal spacing of 2.7 nm, which was increased from that of $K_{0.66}Ti_{1.73}Li_{0.27}O_{3.93}$ (0.77 nm), formed. A similar value of basal spacing has been reported for a dodecylammonium-exchanged $Rb_{0.75}Ti_{1.25}Mn_{0.75}O_4$ (2.7 nm)⁹ and predicted from the basal spacings of the alkylammonium-exchanged $K_{0.8}Ti_{1.73}Li_{0.27}O_4$ (2.9 nm),^{6c} indicating successful intercalation of $C_{12}N^+$ into $K_{0.66}Ti_{1.73}Li_{0.27}O_{3.93}$. While for the $K_{0.80}Ti_{1.71}Li_{0.29}O_{3.97}$ system, the parent titanate (or the protonated form) remained even after being reacted 3 times (Figure 2 inset).

Among possible factors for the different reactivity, such as variation in particle size (Figures 3a and 3b), we anticipated that variation in the composition, or the potassium content, played an important role. Accordingly, control of the composition of KTLOs was carried out for systematically investigat-




Figure 2. XRD patterns of $K_{0.80}Ti_{1.71}Li_{0.29}O_{3.97}$ (a) before and after the reaction with $C_{12}N^+$ for (b) 1, (c) 2, and (d) 3 times and $K_{0.66}Ti_{1.73}Li_{0.27}O_{3.93}$ (e) before and (f) after the reaction with $C_{12}N^+$ for 1 time. Inset: the variation of the adsorbed amount of $C_{12}N^+$ as a function of the number of reactions.


ing the composition–reactivity relationship of KTLOs. The heterogeneous composition of $K_{0.80}Ti_{1.71}Li_{0.29}O_{3.97}$ is another factor to be considered for different reactivity.

Control of Composition of KTLO. The control of the composition of KTLOs was first attempted by solid-state reaction at 800 °C with tuned composition of raw materials. Figures 1b and 1c show the XRD patterns of products obtained by decreasing x in $K_x Ti_{2-x/3} Li_{x/3} O_4$, the amount of potassium in raw materials, from 0.85 to 0.80 and 0.70, respectively. A single phase KTLO with the composition K_{0.78}Ti_{1.81}Li_{0.19}O_{3.86} was obtained at x = 0.80 (Figure 1b). While at x = 0.70, rutile was isolated from the lepidocrocite phase. A similar result from the phase separation has been reported by Sasaki and co-workers, where single phase was obtained only at x =0.80 among x = 0.6-1.0 in $K_x Ti_{2-x/3} Li_{x/3} O_4$. 6c By solid-state reaction, the control of the potassium content of KTLO was found to be difficult. Therefore, the post-synthetic procedure using tuned amounts of aqueous H₂SO₄ solution and subsequent heating was applied to K_{0.78}Ti_{1.81}Li_{0.19}O_{3.86} for controlling the composition. The successful formation of K_{0.66}Ti_{1.73}Li_{0.27}O_{3.93}¹⁶ suggested to us that the potassium content in KTLO decreased and was controllable by changing the added amount of acid. The effect of heating after acidic treatment on the composition of KTLO, which has not been described in the literature, 16 was also investigated in this study.

The XRD patterns of the products obtained by the reaction between $K_{0.78}Ti_{1.81}Li_{0.19}O_{3.86}$ and different amounts of aqueous H_2SO_4 solution are shown in Figure 4 together with that

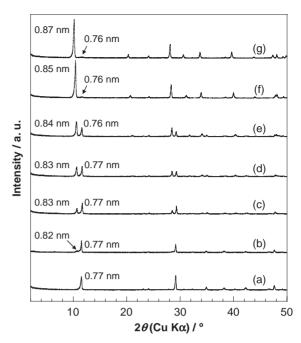


Figure 3. SEM images of (a) KTLO prepared by a solid-state reaction at $800\,^{\circ}\text{C}$ with the composition of raw materials, x in $\text{K}_x\text{Ti}_{2-x/3}\text{Li}_{x/3}\text{O}_4 = 0.85$, and those prepared through H_2SO_4 treatment and subsequent heating at $600\,^{\circ}\text{C}$ of a KTLO synthesized by a solid-state reaction at (b) 1020 and (c) $800\,^{\circ}\text{C}$ with the composition of raw materials, x in $\text{K}_x\text{Ti}_{2-x/3}\text{Li}_{x/3}\text{O}_4 = 0.80$. Scale bars: $5\,\mu\text{m}$ for (a) and (c); $50\,\mu\text{m}$ for (b).

of the parent titanate, where the lepidocrocite structure of the titanate was retained upon reaction. As seen in Table 1, the potassium content in K_{0.78}Ti_{1.81}Li_{0.19}O_{3.86} decreased with the increase of added H₂SO₄. These results reveal that the interlayer potassium ion is extracted and the extracted amount is controlled by changing the added amount of H₂SO₄. A portion of potassium ion was exchanged with proton and/or oxonium ion, which was supported by the XRD patterns and TG-DTA curves of the products, wherein new diffraction peaks due to basal spacing larger than that of the parent titanate^{6c} appeared upon reaction (Figure 4) and weight loss with endothermic peaks, which were ascribable to dehydration, were observed from 60 to 200 °C (Figure 5). It is thought that the composition of KTLO synthesized by solid-state reaction at 800 °C is heterogeneous and the more reactive phase (particles and/or interlayers) in the titanate is protonated upon reaction with

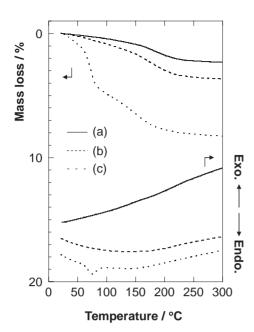
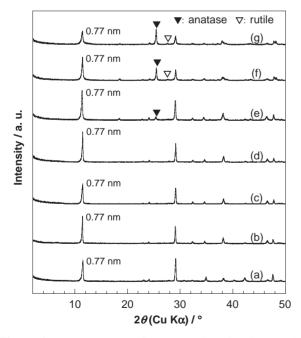

Figure 4. XRD patterns of (a) $K_{0.78}Ti_{1.81}Li_{0.19}O_{3.86}$ and those treated with (b) 1.5, (c) 3.5, (d) 7.5, (e) 11.6, (f) 27.1, and (g) 32.2 mL of aqueous H_2SO_4 solution.

Table 1. Compositions of a KTLO Prepared by Solid-State Reaction at $800\,^{\circ}\text{C}$ and that Treated with Different Amounts of Aqueous H_2SO_4 , and Those Subsequently Heated at $600\,^{\circ}\text{C}$


Added amount of H ₂ SO ₄ /mL	Heating	Phase separation	Composition
_	_	_	$K_{0.78}Ti_{1.81}Li_{0.19}O_{3.86}$
32.2		0	$K_{0.37}Ti_{1.79}Li_{0.21}O_{3.86}$
27.1		0	$K_{0.39}Ti_{1.76}Li_{0.24}O_{3.83}$
11.6		0	$K_{0.56}Ti_{1.72}Li_{0.28}O_{3.86}$
7.5		\circ	$K_{0.60}Ti_{1.72}Li_{0.28}O_{3.89}$
3.5		\circ	$K_{0.68}Ti_{1.72}Li_{0.28}O_{3.94}$
1.5		0	$K_{0.72}Ti_{1.73}Li_{0.27}O_{3.95}$
32.2	0	\circ	$K_{0.36}Ti_{1.79}Li_{0.21}O_{3.87}$
27.1	0	\circ	$K_{0.41}Ti_{1.77}Li_{0.23}O_{3.85}$
11.6	0	\circ	$K_{0.56}Ti_{1.72}Li_{0.28}O_{3.87}$
7.5	\circ		$K_{0.64}Ti_{1.72}Li_{0.28}O_{3.90}$
3.5	\circ		$K_{0.67}Ti_{1.72}Li_{0.28}O_{3.92}$
1.5	0		$K_{0.73}Ti_{1.72}Li_{0.28}O_{3.95}$

 H_2SO_4 aqueous solution leading to phase separation (Figure 4). Lithium ion in the host framework of potassium lithium titanates has been reported to completely be extracted by leaching the titanates in 1 M HCl ($M=\text{mol dm}^{-3}$) aqueous solution. ^{6c} In the present study, dilute acidic solution ($pH \ge 6$) was used, therefore, the extraction of lithium ion from the titanate was suppressed (Table 1).

After heating, the composition of the H_2SO_4 -treated products hardly changed (Table 1). Figure 6 depicts the XRD patterns of the heated products. At smaller amounts of added H_2SO_4 , the corresponding heated products were single phase, whereas anatase and/or rutile were isolated from lepidocrocite phase at larger amounts of added acid. The products treated

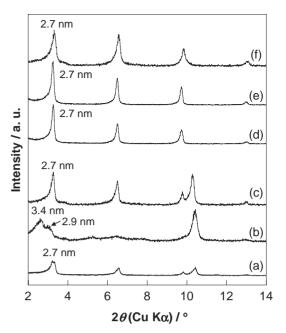


Figure 5. TG-DTA curves of $K_{0.78}Ti_{1.81}Li_{0.19}O_{3.86}$ treated with (a) 7.5, (b) 11.6, and (c) 32.2 mL of aqueous H_2SO_4 solution. If all weight loss up to $200\,^{\circ}C$ is due to the desorption of interlayer water, the composition of the as H_2SO_4 -treated titanates can be expressed as (a) $K_{0.60}Ti_{1.72}Li_{0.28}O_{3.89} \cdot 0.21H_2O$, (b) $K_{0.56}Ti_{1.72}Li_{0.28}O_{3.86} \cdot 0.34H_2O$, and (c) $K_{0.37}Ti_{1.79}Li_{0.21}O_{3.86} \cdot 0.82H_2O$, respectively.

Figure 6. XRD patterns of (a) $K_{0.78}Ti_{1.81}Li_{0.19}O_{3.86}$ and those treated with (b) 1.5, (c) 3.5, (d) 7.5, (e) 11.6, (f) 27.1, and (g) 32.2 mL of aqueous H_2SO_4 solution followed by heating at $600\,^{\circ}C$.

with larger amounts of H₂SO₄ contained protonated titanate particles, and thus, the protonated titanates were transformed to anatase and rutile upon heating at 600 °C to lead to phase

Figure 7. XRD patterns of KTLOs reacted with $C_{12}N^+$; (a)–(c) and (d) and (f) are $K_{0.78}Ti_{1.81}Li_{0.19}O_4$ treated with 1.5, 3.5, and 7.5 mL of aqueous H_2SO_4 solution and those subsequently heated, respectively.

separation (Figures 6e–6g). While, for the products treated with smaller amounts of H_2SO_4 , protonation occurred only within a particle, so that the isolation of bulk titania was suppressed.

Figure 3c depicts an SEM image of $K_{0.78}Ti_{1.81}Li_{0.19}O_{3.86}$ treated with H_2SO_4 and subsequently heated. The platy morphology with a diameter of $1{-}2\,\mu m$ of the parent titanate did not change upon reaction.

Reaction between KTLOs with Controlled Compositions and $C_{12}N^+$. Both the H_2SO_4 -treated titanates and the corresponding heated titanates were reacted with $C_{12}N^+$. Figure 7 shows the XRD patterns of the products, wherein the basal spacing of the titanates increased to 2.6–2.9 nm from 0.77 nm upon reaction, indicating successful intercalation of $C_{12}N^+$ into the titanates.

Figure 8 indicates that the amount of adsorbed ammonium increases with the decrease in potassium content for the heated system, while that is irrelevant to the potassium content for the H₂SO₄-treated system. For heated titanates, it is thought that interlayer protons are removed, so that the amount of adsorbed ammonium reflects the composition (which correlates to the layer charge density). Lower potassium content and lower layer charge density make the electrostatic interaction between the titanate sheets weaker, leading to efficient intercalation of ammonium. Upon heating, the composition of the H₂SO₄treated titanates was homogenized, which was supported by the single XRD pattern of the heated titanates reacted with ammonium (Figures 7d-7f). For the H₂SO₄-treated system, the protonated titanate particles were isolated as described above. Taking that a dominant driving force of the present cation exchange is an acid-base interaction between the interlayer alkali cation and the acidic solution of the ammonium ion into consideration, protons were prevented from being exchanged with

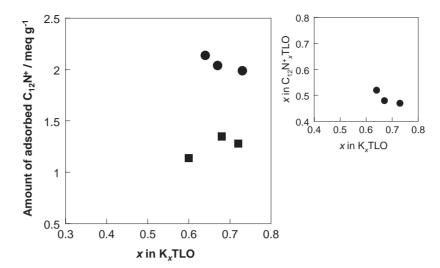


Figure 8. Variation in the adsorbed amount of $C_{12}N^+$ as a function of the potassium content of (\blacksquare) H_2SO_4 -treated titanates and (\bullet) the corresponding heated titanates. Inset: Variation in the adsorbed amount of $C_{12}N^+$ as a function of potassium content in heated titanates.

the ammonium in acidic media. The potassium phase selectively reacted with the ammonium to result in the phase separation (Figures 7a–7c). Judging from the intensity of the diffraction peaks due to the protonated phase and the ammonium-exchanged phase for $\rm H_2SO_4\text{-}treated$ titanates, the titanates are thought to be composed of similar amounts of protonated and parent (potassium) phase. Therefore, the variation in the adsorbed amount of $\rm C_{12}N^+$ between the $\rm H_2SO_4\text{-}treated$ titanates and the heated titanates by about two times is plausible (Figure 8).

The reaction of the heated titanates with dodecylammonium was not quantitative, which is shown in Figure 8 inset. A possible reason for the result is higher layer charge density of the heated titanates $(0.31-0.36 \text{ nm}^2 \text{ e}^{-1})$ if compared with those of other layered solids whose reaction with organic molecular species has been reported to be quantitative¹⁸ (e.g. smectites, $0.5-1 \text{ nm}^2 \text{ e}^{-1}$). The present post-synthetic treatment using K_{0.78}Ti_{1.81}Li_{0.19}O_{3.86} as the parent titanate is difficult for synthesizing titanates with potassium content lower than 0.64 per unit cell (equivalent to $0.36 \,\mathrm{nm}^2\,\mathrm{e}^{-1}$) (Figure 9). However, Rb_{0.75}Ti_{1.75}Li_{0.25}O₄ and Cs_{0.70}Ti_{1.77}Li_{0.27}O₄ have been reported to be formed by solid-state reaction, 6c and applying the present treatment to the two titanates, titanates with layer charge density lower than that of $K_{0.64}Ti_{1.72}Li_{0.28}O_{3.90}$ will be obtained to investigate the intercalation chemistry of lepidocrocite-type titanates.

Conclusion

We have reported the composition-dependent controlled reactivity of potassium lithium titanates toward an alkylammonium ion. The composition of the titanates has successfully been controlled through the reaction of a potassium lithium titanate obtained by a solid-state reaction with tuned amounts of aqueous $\rm H_2SO_4$ solution followed by annealing.

This work was supported by a Grant-in-Aid for Scientific Research (B) (No. 19350103) from Japan Society for the Promotion of Science.

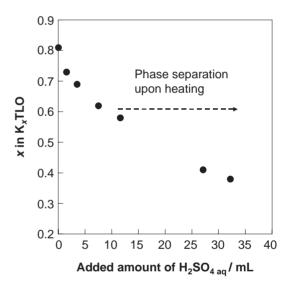


Figure 9. Variation in the potassium content of $K_{0.78}Ti_{1.81}$ - $Li_{0.19}O_{3.86}$ as a function of the added amount of aqueous H_2SO_4 solution.

References

- a) G. Lagaly, K. Beneke, Colloid Polym. Sci. 1991, 269,
 b) B. Raveau, Rev. Chim. Miner. 1984, 21, 391.
- 2 a) Y. I. Kim, S. Salim, M. J. Huq, T. E. Mallouk, *J. Am. Chem. Soc.* **1991**, *113*, 9561. b) M. Shibata, A. Kudo, A. Tanaka, K. Domen, K. Maruya, T. Onishi, *Chem. Lett.* **1987**, 1017.
- 3 S. W. Keller, H.-N. Kim, T. E. Mallouk, *J. Am. Chem. Soc.* **1994**, *116*, 8817.
- 4 a) A. F. Reid, W. G. Mumme, A. D. Wadsley, *Acta Crystallogr., Sect. B* **1968**, 24, 1228. b) D. Groult, C. Mercey, B. Raveau, *J. Solid State Chem.* **1980**, 32, 289.
- 5 T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, H. Nakazawa, *J. Am. Chem. Soc.* **1996**, *118*, 8329.
- 6 a) T. Sasaki, F. Izumi, M. Watanabe, *Chem. Mater.* **1996**, 8, 777. b) S. Nakano, T. Sasaki, K. Takemura, M. Watanabe, *Chem. Mater.* **1998**, *10*, 2044. c) T. Sasaki, F. Kooli, M.

- Iida, Y. Michiue, S. Takenouchi, Y. Yajima, F. Izumi, B. C. Chakoumakos, M. Watanabe, *Chem. Mater.* 1998, 10, 4123. d)
 M. Iida, T. Sasaki, M. Watanabe, *Chem. Mater.* 1998, 10, 3780.
 e) F. Kooli, T. Sasaki, M. Watanabe, *Chem. Commun.* 1999, 211.
- 7 a) R. Kaito, N. Miyamoto, K. Kuroda, M. Ogawa, *J. Mater. Chem.* **2002**, *12*, 3463. b) M. Miyamoto, K. Kuroda, M. Ogawa, *J. Phys. Chem. B* **2004**, *108*, 4268. c) Y. Ide, M. Ogawa, *Chem. Lett.* **2005**, *34*, 360.
- 8 T. Nakato, Y. Yamashita, K. Kuroda, *Thin Solid Film* **2006**, 495, 24.
- S. Yamanaka, K. Kunii, Z.-L. Xu, Chem. Mater. 1998, 10, 1931.
- 10 a) O. Yoshida, M. Okamoto, *Macromol. Rapid Commun.* **2006**, 27, 751. b) T. Saito, M. Okamoto, R. Hiroi, M. Yamamoto, T. Shiroi, *Macromol. Mater. Eng.* **2006**, 291, 1367.
- 11 N. Suzuki, N. Hayashi, C. Honda, K. Endo, Y. Kanzaki, Bull. Chem. Soc. Jpn. 2006, 79, 711.

- 12 W. A. England, J. E. Birkett, J. B. Goodenough, P. J. Wiseman, *J. Solid State Chem.* **1983**, *49*, 300.
- 13 a) Q. Feng, K. Kajiyoshi, K. Yanagisawa, *Chem. Lett.* **2003**, *32*, 48. b) Y. Feng, T. Ito, Q. Feng, *J. Ceram. Soc. Jpn.* **2007**, *115*, 165.
 - 14 N. Sukpirom, M. M. Lerner, Chem. Mater. 2001, 13, 2179.
 - 15 Q. Wang, Q. Gao, J. Shi, Langmuir 2004, 20, 10231.
- 16 R. Hiroi, S. S. Ray, M. Okamoto, T. Shiroi, *Macromol. Rapid Commun.* **2004**, 25, 1359.
- 17 T. Sasaki, Y. Ebina, T. Tanaka, M. Harada, M. Watanabe, G. Decher, *Chem. Mater.* **2001**, *13*, 4661.
- 18 a) H. V. Olphen, An Introduction to Clay Colloid Chemistry, 2nd ed., Wiley-Interscience, New York, 1977. b) G. Lagaly, Clay Miner. 1981, 16, 1. c) M. Ogawa, K. Kuroda, Bull. Chem. Soc. Jpn. 1997, 70, 2593. d) N. Kinomura, M. Ohshiba, M. Kobayashi, N. Kumada, F. Muto, J. Chem. Soc., Dalton Trans. 1987, 609.